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Perturbative Analysis of the Convection Instability 
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A rotationally symmetric B~nard cell is considered with the aim of applying a 
perturbation formalism which works far from equilibrium. As a first step the 
unperturbed Gaussian stationary state is constructed from the linearized equa- 
tions of motion. Then the stationary and the dynamic vertex structures gener- 
ated by the nonlinear terms are discussed in view of a possible renormalization- 
group application. 
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1. INTRODUCTION 

With renormalizat ion-group methods the f luctuat ion-dominated,  or 
"critical," region around an instability which is "far from equilibrium" can 
in principle be treated in analogy with critical dynamics. The main obstacle 
so far seems to have been the lack of a perturbation scheme general enough 
to apply to this regime. This difficulty has, however, been overcome in a 
recent work by Onuki and Kawasaki, (l) who have studied a typical 
example of a far-from-equilibrium transition, namely a fluid near its critical 
point subject to a shear flow. 

In this paper we study another example of this class, namely a fluid 
subject to a vertical heat flow near its convection, or B6nard instability. In 
a Fokker-Planck description of the fluctuations it turns out that a precise 
meaning can be given to the notion "far from equilibrium," namely that of 
a stationary state with a nonvanishing dissipative probability current. The 
latter turns out to be a key quantity for understanding the difficulties with 
perturbation theory and also to overcome them. 
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The convection instability is a classical problem treated exhaustively 
by Chandrasekhar. (=) But it was Graham who succeeded in showing its 
analogy with a second-order equilibrium transition. (3~4) More recently, the 
importance of rotational symmetry in the horizontal plane for the question 
of whether the transition is first or second order has been emphasized by 
Swift and Hohenberg. (5) This symmetry will be preserved in the present 
formulation. As an introductory application, we will briefly discuss the 
well-known linear deterministic stability analysis which fixes the bifurcation 
point. The main subject, however, will be the determination of the unper- 
turbed stationary probability distribution, which far from equilibrium turns 
out to be nontrivial. (1) The Gaussian distribution describing this state will 
be the basis of our perturbation formalism, which is a generalization of 
earlier versions (6'7) and therefore will only be sketched. The application of 
this formalism to renormalization-group calculations will be given else- 
where. 

. THE THERMOHYDRODYNAMIC EQUATIONS 

In Boussinesq approximation (2) the dynamics of the fluid are de- 
scribed by the Navier-Stokes equation 

0 + (u- V)u = - ( l / p )  Vp + ~oVZu + X +  ~ (1) 

and by the heat diffusion equation 

T +  (u .  V)V=  (~/cv) V2T - ( l l c v )  V . q  (2) 

where u(r, t) is the velocity field which satisfies the transversality condition 

v . u  = 0 (3) 

and T(r, t) is the local temperature, p is the pressure, p the mass density, u 0 
the shear viscosity, x the heat conductivity, c v the specific heat, and X a 
destabilizing force per unit mass. The heat flux q and the force ~ are 
stochastic quantities to be specified later. 

We are interested in the deviations v = u - u o and v 4 = T -  T O from a 
given stationary flow pattern Uo(r)and u4(r ) = T0(r ). In these variables and 
in Cartesian coordinates r = (Xl, x 2, x3) Eqs. (1) and (2) may be written in 
the combined form (repeated indices are summed from 1 to 4) 

{)i ~" - -  Vj V j V  i "}" Pi V2/)i - 1 7 i l )  _ S i j v  j -I- ~i; i = 1 . . . . .  4 (4) 

where 7 4 -~ O, Pi = Po (i = 1,2, 3), P4 = I s  ~4 = - -  Cv- ] ~ " q, and 

S~ = A/j + B/j (5) 
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Here 

Ao.v j = Uoj V j v  i + (V+u0/)~ (6) 

describes a drag and 

B~j(v)vj  = X~(U) - X~-(Uo) (7) 

with X4 ~- 0 the destabilizing force. 
In the case of the convection instability the destabilizing force is due to 

the acceleration of gravity g = (0, 0, - g )  acting through thermal expansion 
6 p / 0  = - a ( T  - T ) ,  where T is an average temperature, so that 

x = [ 1 - ( 8 )  

Below the instability, the flow pattern for a Brnard cell bounded by two 
horizontal planes is given by 

u o = 0 ,  u ~ - -  r o=  f + f l x  3 (9) 
which is a solution of the deterministic equations (1), (2) with ~ = 0, 44 = 0, 
and P0 =/~ - pgx3(1 - ~ aflx3) .  Equations (6)-(9) lead to a constant matrix 
(5), 

s=( ~ (10) 

where y ~ - a g  and ~ = (0, 0, I). 
Eliminating the pressure p with the help of Eq. (3) and going over to 

Fourier components according to 

= V-' /2fa3r ,~ , (r )  e x p ( -  iq. r) (11) Uiq 

V being the volume, Eq. (4) takes the form (7,s) 

6• = f ~  i =  1 . . . . .  4 (12) 

where 

f o  = _ V - , / 2 ~  i ~ P i / ( q ) V • 1 7 7  k (13) 
k 

is the mode-coupling force, 

f'q = - viqZv • (not summed) (!4) 

is the viscous force, and 

g;q = - P , , ( q ) S , j v  l j  . (15) 

is the drag and destabilizing force (primes designate dissipative quantities). 
In these formulas 

P0(q) = 6q - 4;4 (t6) 
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with ~ = q/q;  q4 ~ 0 is the transverse projection, which has the property 
P~,Ptj = P~j and v• q = Pij(q)Vjq. 

3. LINEAR STABILITY ANALYSIS 

For the determination of the bifurcation point only the linear deter- 
ministic part of Eq. (12), 

f~ + g'~ = A.~v~ (17) 

is needed. Here/~ -- i, q, repeated indices being also summed over q, and 

Ai..Jk = Pi' (q)~0 (q)6q,k (18) 

with 

h/j(q) = piq260 + S~,Pt/(q) (19) 

Since the instability is of the soft-mode type, <2) we also put b i = 0, so that 
Eq. (12) reduces to A,,v, = 0, or 

P0q2V•  + 7pv~ = 0, t i p .  Vq + v4q2V4q = 0 (20) 

Here p(q) ~-- (el3(q), e23(q), P33(q)) has the properties p2 = P3 and P/jpj = Pi- 
Choosing the x I axis such that q = (ql, O, q3), the solution of Eqs. (20) is 
given by 

q,q3vlq - q2V3q - (/,4//3)qav4q = 0 (21) 

V2q = 0, and by the condition 

q6/q2 = 0 4 ~/3T/t,0t,4 _~. Rh-4  > 0 (22) 

which means/3 < 0. Here R is the Rayleigh number and h the height of the 
B6nard cell. Eliminating Vlq with the help of the transversality condition 
(3), Eq. (21) yields 

/)4q ~--" - -  (Poq4/yq~)V3q (23) 

Condi t ion  (22) has the solutions q = q ( X ) ( Q ,  q0,  q3=q(3X)(Q, q0  
= [(q(X))2 _ q2]1/2 (~ = 0, ___), where 

2 " 1/3 q(0) = ( Q  ql) , q(-+) = ( - 1 + i ~ / 3 ) q ~ ~  (24) 

In order to illustrate the well-known determination of the bifurcation point 
Qc, qle, (2) we choose fixed boundary conditions for simplicity, 

v~ = 0; i = 1 . . . . .  4; x 3 = + h / 2  (25) 

Then the above solutions are even or odd functions of x3; the convection 
instability is known to be given by the even solutions. (2) Hence, reversing 
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the Fourier  t ransform (11), we have (8) 

V3q(Xl'X3) = E A(X)(xl)c~ 
X=O,+ 

with 

(26) 

A (X)(x 1) = V-1/2~_. v3 q, q~x,e iq~.,:, (27) 
ql 

and the boundary  conditions v 3 = 0, ~73D 3 ~-- 0, v 4 = 0 at x 3 = -I.- hi2,  which 
follow from (25), (3), and % = 0, are, respectively, 

~ A  (~')(xl) cos( q~a~h /2) = 0 

A ~X)(x 1)q(3 ~ sin( q~X~h /2)  = 0 (28) 
), 

2 A ()~')(Xl)(q (X)) -2 cos(q(X)h/2) = 0 

Note  that v t = 0 at x 3 ~ -  ~ h/2  is determined by the boundary  condit ion 
V3I) 3 = 0 through Eq. (3). The condit ion for a nontrivial solution A (~ 
A (+), A ( - )  then determines the bifurcation point  Q = Qr ql = qlc .~2~ 

. THE FOKKER-PLANCK EQUATION 

In the next step the stochastic quantities ~iq are introduced explicitly. 

is the probabil i ty flux, and 

where 3~ = 0/0%, 

J~ = (f~ - O~C~.)P (32) 

f~ = fo  + f~ + g~ (33) 

They  are determined by the correlations 

(~ ( t )~ ( t ' ) )  = 2C~ 8(t - t') (29) 

where C,~ = C~ is the diffusion matrix, which we write in the form ~7) 

C,.,j k = D(q)P~j(q) 8.+k, 0 (30) 

where D(q) is a nonnegat ive funct ion (more generally, two functions D o 
and D 4 should be introduced).  

With (29), Eqs. (12) are generalized Langevin equations, which may 
equivalently be expressed in terms of the Fokke r -P lanck  equation for the 
probabil i ty distribution P(v, t), (6) 

= - O J ~  (31) 
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Correlation functions between the Viq(t ) are averages with the station- 
ary probability distribution, which may be written in the form 

pS(v) = Z - 'e-e(~)  (34) 

In terms of the free energy F(v) the stationary version of Eq. (31) reads 

[O~ - ( O , F ) ] ( j ,  + f ~  = 0 (35) 

where 

j~ =f~ + g'~ + C~(O.F) - (O,C.~) (36) 

so that j ,  P s is the dissipative part of the stationary probability flux. j~ = 0 
are the potential conditions, (6) which express detailed balance and, for 
T = const, lead to a Maxwell distribution, 

r = ~T ~] [Vq[2 
q 

However, with a Maxwell distribution j~ = 0 implies, besides the Einstein 
relation D(q)= Tuoq2, (7) that S = 0 ,  which means, according to (10) and 
(22), the absence of a soft mode instability. Thus, S 4 :0  implies a stationary 
state with a nonvanishing dissipative probability current, j~P~ ~ O, which is 
a genuine far-from-equilibrium situation. 

5. GAUSSIAN UNPERTURBED STATIONARY STATE 

We again turn to the linear zero-frequency situation, but including the 
stochastic quantities. In the Fokker-Planck version of the problem this 
leads to Eq. (35) without the nonlinear term fo. The aim of course is to 
construct the basis for a perturbation treatment. This means that the 
unperturbed stationary state Pu~n = Zu~ 1 e x p ( -  Fun ) must be a Gaussian, so 
that the unperturbed Green's functions have the factorization property of 
Wick's theorem. Hence we seek a solution of Eq. (35) with 

Fun= i ~E~,,v~v,, (37) 

Making use of Eq. (17), this leads to the condition 

o,,~ - E , , ~ , , , ~ , / : , , v ~  = 0 ( 3 8 )  

valid for all %. Here 

o~ =-- C~Ex~ - A~ (39) 

and the unperturbed dissipative probability flux is jTP~n = %~v~P~n. 
According to Eqs. (18) and (30), we may look for a solution of the 

form Eiq,j k = Eo.(q)Sq+k, o and Oiq,j k = o~(q)6q, k. In terms of o~ the condition 
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(38) becomes, in matrix notation, 

T r o =  0; Ea + (Eo) T= 0 (40) 
q 

where the index T means the transposed, ET(q) = E ( - q ) ,  and 

o (q) = P (q) { D (q) E (q) - h(q) } (41 ) 

P(q) is the matrix defined by (16), 

P(q) = (P(q)0 01) (42) 

With Eqs. (10), (19), and (41) one easily checks that o = 0 is in general not 
a solution of (40). Hence the state described by E is far from equilibrium in 
the sense that j ;n  ~ 0. 

Making the simplifying assumption ET(q) = E(q) = E ( - q )  and intro- 
ducing the inverse matrix 

E - I = X = ( X  x ~)  (43) 

the second condition (40) becomes 

2 D P  = P A X  + x h T p  (44) 

Going through the algebra, one finds 

= d 4 + 2B4"qp 2, x = -- T/p (45) 

and 

where 

and 

�89 + XP) = AoP + 2Co~IPIQ 

, q z ( B  0 .4- C4)Am/[ l - 2(C 0 + C4)Bmp 2] 

(46) 

(47) 

O = (1/Ipl) p | p (48) 

has the properties Q2 = e and PQ = QP = Q. Here the abbreviations 

A, = O ( q ) / p ,  q2; B~ = t9/2~,iq2; C = 7 /2v ,  q 2 (49) 

have been introduced for i = 0,4,m, where ~m =�89 + P4). 
The solution of Eq. (46) is not unique; written in the form 

X = cl + rP + sQ (50) 

one finds r + r = A 0 and s = 2C0~/Ip I. Here c v a 0 since otherwise PX = X 
and hence Det • = 0. The inversion of X is now readily done and, with the 
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help of the first condition (40), yields a unique matrix E, which, however, 
we will not give here, the important point being to have shown the existence 
of a solution (37). 

. SKETCH OF THE PERTURBATION THEORY AND CONCLUSION 

Inclusion of the nonlinear term fo in Eq. (35) will lead to a perturbed 
stationary state (34) which may be written as a power series 

F = F u n  + ' ~  F N 
N = I  

with 

(51) 

DNt~v = A ( N )  . . ~ t t v h i - - . h N l ) h l  �9 , 'Dh~v, 

Dot ,, = A~ ~  C~,, 

N ~ > I  

(56) 

with 

__I,~(N) v - . -  ( 5 2 )  

One finds that all orders N > 2 are generated by an external field 0J ~), 
while for 4,~ 1)= 0 the lowest order term is found to be F 5. With this 
information one may analyze the convection instability by applying static 
renormalization-group methods for small Iq- qr It is easily seen from 
examining diagrams that F 5 generates terms F I a n d  F 3 in first order and 
terms F 4 in second order of perturbation theory. It remains to be seen 
whether the rotational symmetry around the x 3 axis which is implicit in our 
formulation will cancel F~ and F 3, as was the case in the iterative solution 
of Swift and Hohenberg. (5) 

The dynamics near the convective instability may also be analyzed by 
an appropriate perturbation theory, combined with renormalization-group 
methods for small Iq - qc] and to. Since the instability is of the soft-mode 
type, % = 0, it is desirable to have a formalism in which stationarity is the 
zero-frequency limit of dynamics in the sense that zero-time correlation 
functions are connected to the corresponding zero-frequency response 
functions by a fluctuation-dissipation theorem. This is guaranteed if a 
dynamical matrix D~, with the properties 

o _ C ~ ;  0 = 0 ( 5 3 )  D~ = D~ D,~ - D~o 

and 

f ,  = ( O ~ F ) D ~  - (3~D~.)  (54)  

exists. (6) Similarly to F, such a matrix may be constructed as a power series 

= X (55) 
N = 0  
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The lowest order nonvanishing terms are found to be A r176 and A ~3). The 
term A ~~ leads to the unper turbed conjugate variables t30~ and A ~3), etc., 
give rise to exceptional dynamical  vertices ~7) of order five and higher, while 
f f  gives rise to a normal  dynamical  vertex ~6) of order three. 

Thus it becomes apparent  that  the Fe ynm an  diagram formalism devel- 
oped earlier ~6'7) is well suited, in the generalized version sketched here, to 
analyze the convect ion instability. This formalism has no obvious resem- 
blance with the one developed by Onuki  and Kawasaki,  ~ 1) which lacks the 
f luctuat ion-diss ipat ion relation ment ioned above. 

It would be of interest to know whether the method  described here also 
works in the case of a ha rd -mode  instability (limit circle). Since in this case 
co, 4: 0, one would expect a generalization of the f luc tua t ion-diss ipa t ion  
relation to hold in which the correlation functions with period o~ c are the 
limit o~ ~ r c of the corresponding response functions. 

There is not  much hope, of course, that  this type of per turbat ion 
formalism would work in the problem of fully developed turbulence, where 
a renormalized perturbat ion theory based on a generating functional seems 
to be necessaryJ 9) 
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